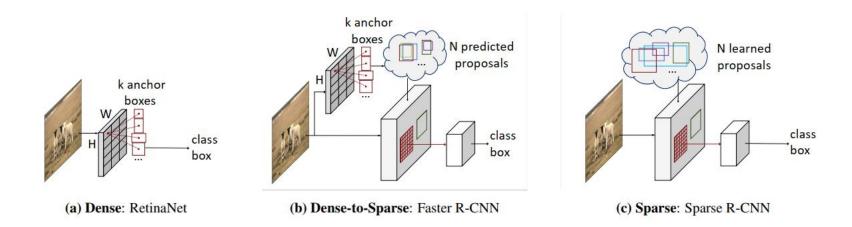
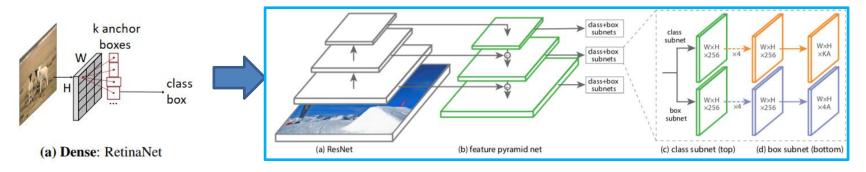
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

Peize Sun^{1*}, Rufeng Zhang^{2*}, Yi Jiang^{3*}, Tao Kong³, Chenfeng Xu⁴, Wei Zhan⁴, Masayoshi Tomizuka⁴, Lei Li³, Zehuan Yuan³, Changhu Wang³, Ping Luo¹

¹The University of Hong Kong ²Tongji University

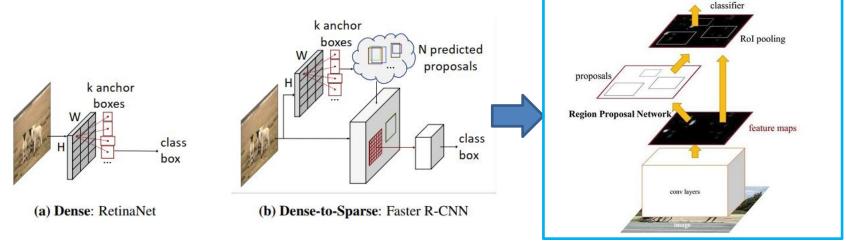
³ByteDance AI Lab ⁴University of California, Berkeley





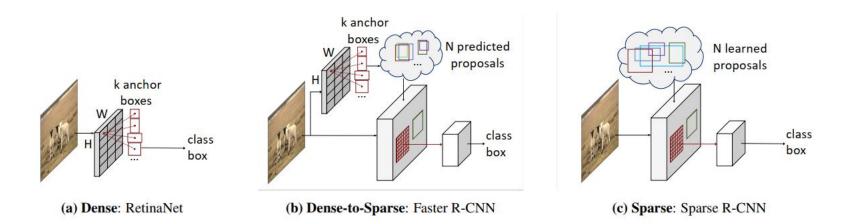
HW k object candidates

RetinaNet: Focal Loss for Dense Object Detection

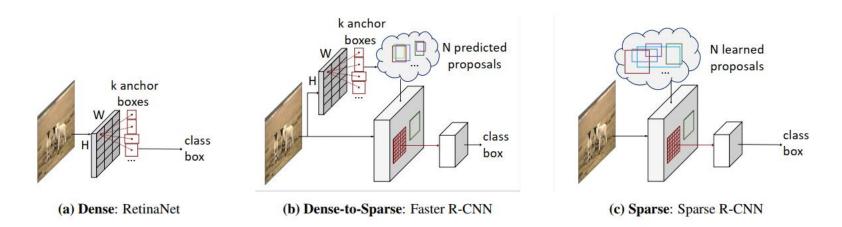


select a small set of N candidates from dense HW k object candidates(RPN)

extract image features within corresponding regions by pooling operation



directly provides a small set of *N* learned object proposals.



directly provides a small set of *N* learned object proposals.

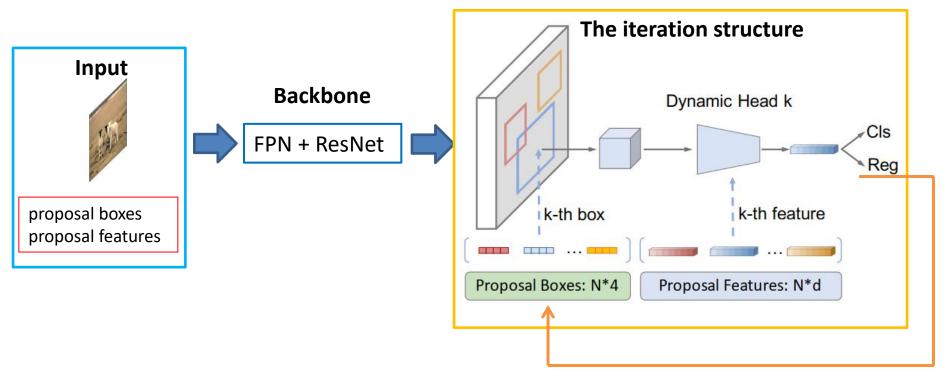
Here N << HW k

HW k (up to hundreds of thousands)

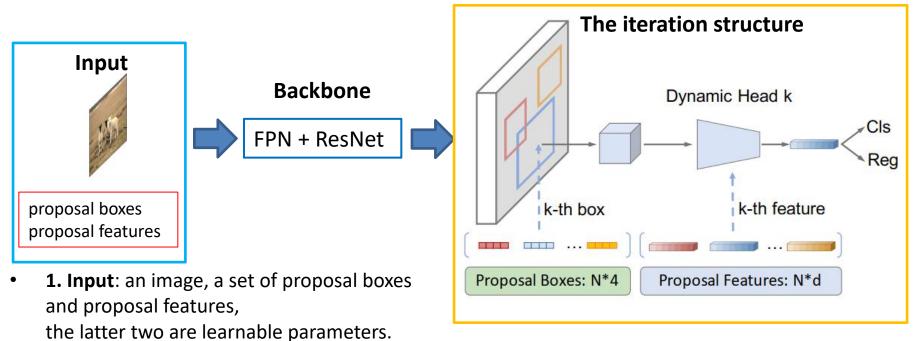
N (e.g. 100)

without non-maximum suppression post procedure

Overview of Sparse R-CNN

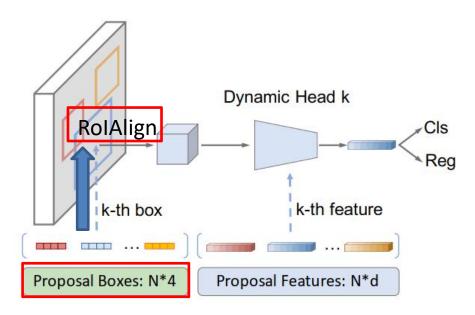


Overview of Sparse R-CNN



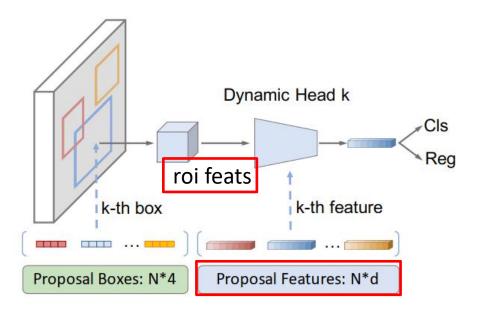
- 2. Backbone: FPN + ResNet
- **3. Regression prediction** :3-layer perception
- **4.Classification prediction** :a linear projection.

Details of Sparse R-CNN



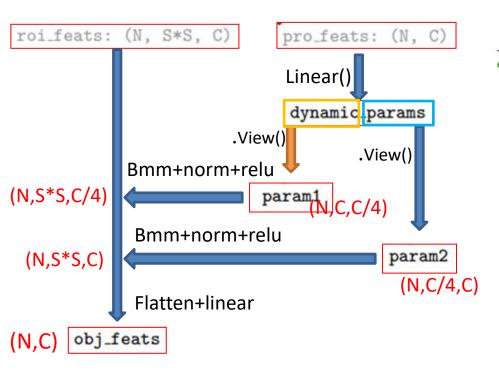
coarse localization of objects

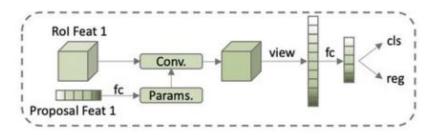
Details of Sparse R-CNN



coarse localization of objects

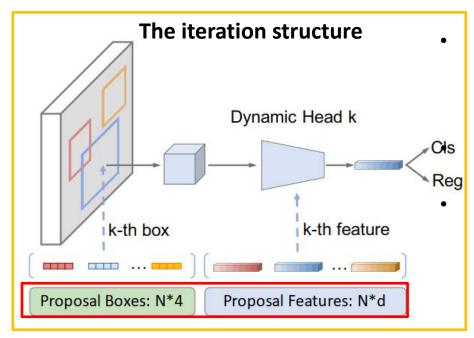
Dynamic Instance Interaction





```
def dynamic_instance_interaction(pro_feats, roi_feats):
   # pro_feats: (N, C)
   # roi_feats: (N, S*S, C)
   # parameters of two 1x1 convs: (N, 2 * C * C/4)
   dynamic_params = linear1(pro_features)
   # parameters of first conv: (N, C, C/4)
   param1 = dynamic_params[:, :C*C/4].view(N, C, C/4)
   # parameters of second conv: (N, C/4, C)
   param2 = dynamic_params[:, C*C/4:].view(N, C/4, C)
   # instance interaction for roi_features: (N, S*S, C)
   roi_feats = relu(norm(bmm(roi_feats, param1)))
   roi_feats = relu(norm(bmm(roi_feats, param2)))
   # roi_feats are flattened: (N, S*S*C)
   roi_feats = roi_feats.flatten(1)
   # obj_feats: (N, C)
   obj_feats = linear2(roi_feats)
   return obj_feats
```

Details of Sparse R-CNN



the iteration structure: the newly generated object boxes and object features will serve as the proposal boxes and proposal features of the next stage in iterative process.

(Cascade R-CNN)

self-attention module :Before dynamic instance interaction, on object features. (Attention is all you need)

coarse localization of objects

prediction loss

$$\mathcal{L} = \lambda_{cls} \cdot \mathcal{L}_{cls} + \lambda_{L1} \cdot \mathcal{L}_{L1} + \lambda_{giou} \cdot \mathcal{L}_{giou}$$
 focal loss L1 loss generalized IoU loss

$$\lambda_{cls} = 2$$
, $\lambda_{L1} = 5$, $\lambda_{giou} = 2$.

- The final loss only performed on matched pairs
- optimal bipartite matching between predictions and ground truth objects

Training details

- 1. ResNet-50 as backbones. The backbone is initialized with the pre-trained weights on ImageNet
- 2. The mini-batch is 16 images and all models are trained with 8 GPUs (NVIDIA Tesla V100 GPU)
- 3. 36 epochs
- 4. proposal boxes, proposal features: 100
- 5. iteration is 6

Experiments

Method	Feature	Epochs	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l	FPS
RetinaNet-R50 [53]	FPN	36	38.7	58.0	41.5	23.3	42.3	50.3	24
RetinaNet-R101 [53]	FPN	36	40.4	60.2	43.2	24.0	44.3	52.2	18
Faster R-CNN-R50 [53]	FPN	36	40.2	61.0	43.8	24.2	43.5	52.0	26
Faster R-CNN-R101 [53]	FPN	36	42.0	62.5	45.9	25.2	45.6	54.6	20
Cascade R-CNN-R50 [53]	FPN	36	44.3	62.2	48.0	26.6	47.7	57.7	19
DETR-R50 [3]	Encoder	500	42.0	62.4	44.2	20.5	45.8	61.1	28
DETR-R101 [3]	Encoder	500	43.5	63.8	46.4	21.9	48.0	61.8	20
DETR-DC5-R50 [3]	Encoder	500	43.3	63.1	45.9	22.5	47.3	61.1	12
DETR-DC5-R101 [3]	Encoder	500	44.9	64.7	47.7	23.7	49.5	62.3	10
Deformable DETR-R50 [63]	DeformEncoder	50	43.8	62.6	47.7	26.4	47.1	58.0	19
Sparse R-CNN-R50	FPN	36	42.8	61.2	45.7	26.7	44.6	57.6	23
Sparse R-CNN-R101	FPN	36	44.1	62.1	47.2	26.1	46.3	59.7	19
Sparse R-CNN*-R50	FPN	36	45.0	63.4	48.2	26.9	47.2	59.5	22
Sparse R-CNN*-R101	FPN	36	46.4	64.6	49.5	28.3	48.3	61.6	18

Table 1 – Comparisons with different object detectors on COCO 2017 val set. The top section shows results from Detectron2 [53] or original papers [3, 63]. Here "*" indicates that the model is with 300 learnable proposal boxes and random crop training augmentation, similar to Deformable DETR [63]. Run time is evaluated on NVIDIA Tesla V100 GPU.

Ablation study

Sparse	Iterative	Dynamic	AP	AP_{50}	AP ₇₅	AP_s	AP_m	AP_l
√			18.5	35.0	17.7	8.3	21.7	26.4
\checkmark	√		32.2 (+13.7)	47.5 (+12.5)	34.4 (+16.7)	18.2 (+9.9)	35.2 (+13.5)	41.7 (+15.3)
√	\checkmark	\checkmark	42.3 (+10.1)	61.2 (+13.7)	45.7 (+11.3)	26.7 (+8.5)	44.6 (+9.4)	57.6 (+15.9)

Table 3 – Ablation studies on each components in Sparse R-CNN. Starting from Faster R-CNN, we gradually add learnable proposal boxes, iterative architecture, and dynamic head in Sparse R-CNN. All models are trained with set prediction loss.

从Faster R-CNN(40.2 AP)出发,直接将RPN替换为a sparse set of learnable proposal boxes,AP降到18.5;引入iterative结构提升AP到32.2;引入dynamic instance interaction最终提升到42.3 AP。

The effect of feature reuse

Cascade	Feature reuse	AP	AP_{50}	AP ₇₅	
		18.5	35.0	17.7	
\checkmark		20.5(+2.0)	29.3	20.7	
\checkmark	\checkmark	32.2(+11.7)	47.5	34.4	

Table 4 – The effect of feature reuse in iterative architecture. Original cascading implementation makes no big difference. Concatenating object feature of previous stage to object feature of current stage leads to a huge improvement.

The effect of instance-interaction in dynamic head

Self-att.	Ins. interact	AP	AP_{50}	AP_{75}
		32.2	47.5	34.4
✓		37.2(+5.0)	54.8	40.1
✓	✓	42.3(+5.1)	61.2	45.7

Table 5 – The effect of instance-interaction in dynamic head. Without instance interaction, dynamic head degenerates to self-attention. The gain comes from both self-attention and instance-interaction.

Initialization of proposal boxes

Init.	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
Center	41.5	59.6	45.0	25.6	43.9	56.1
Image	42.3	61.2	45.7	26.7	44.6	57.6
Grid	41.0	59.4	44.2	23.8	43.7	55.6
Random	42.1	60.3	45.3	24.5	44.6	57.9

Table 6 – Effect of initialization of proposal boxes. Detection performance is relatively robust to initialization of proposal boxes.

- "Center" means all proposal boxes are located in the center of image at beginning, height and width is set to 0.1 of image size.
- "Image" means all proposal boxes are initialized as the whole image size.
- "Grid" means proposal boxes are initialized as regular grid in image, which is exactly the initial boxes in G-CNN [34].
- "Random" denotes the center, height and width of proposal boxes are randomly initialized with Gaussian

number of proposals

Proposals	AP	AP_{50}	AP_{75}	FPS	Training time
100	42.3	61.2	45.7	23	19h
300	43.9	62.3	47.4	22	24h
500	44.6	63.2	48.5	20	60h

Table 7 – Effect of number of proposals. Increasing number of proposals leads to continuous improvement, while more proposals take more training time.

number of stages

Stages	AP	AP_{50}	AP_{75}	FPS	Training time
1	21.7	36.7	22.3	35	12h
2	36.2	52.8	38.8	33	13h
3	39.9	56.8	43.2	29	15h
6	42.3	61.2	45.7	23	19h
12	41.6	60.2	45.0	17	30h

Table 8 – Effect of number of stages. Gradually increasing the number of stages, the performance is saturated at 6 stages.

Method	Pos. encoding	AP	AP_{50}	AP ₇₅
DETR [3]	√	40.6	61.6	1=
DETR [3]		32.8 (-7.8)	55.2	194
Sparse R-CNN	√	41.9	60.9	45.0
Sparse R-CNN		42.3(+ 0.4)	61.2	45.7

Table 10 – Proposal feature vs. Object query. Object query is learned positional encoding, while proposal feature is irrelevant to position.

